
GPIO TOOLBOX© 2025 John A. Oakey

V011225

Import the module
import RPi.GPIO [as string] - as
"IO" is assumed in the following

Pin numbering: a choice is required to specify BCM or
BOARD to designate pins/channels: Note that for all intents a "PIN"
means the same thing as a "CHANNEL": (see diagram on page2)
IO.setmode(IO.BCM) or IO.setmode(IO.BOARD)

Setup: Every pin that is to be used must be defined as in or out:
IO.setup(channel, IO.IN) or IO.setup(channel, IO.OUT)
An initial state can be set by adding: initial=IO.HIGH or IO.LOW
For example: IO.setup(channel, IO.OUT, initial=IO.HIGH)
Multiple channels can be set at once using a list or a tuple:
chan_list = [11,12] or chan_tuple = (11,12)
For example: IO.setup(chan_list, IO.OUT)

Read or write (set) pins:
IO.input(channel) (returns: 0=False=IO.Low, 1=True=IO.High)
IO.output(channel, state) (states same as above)
Can output to several channels with one command:
chanlist = [11,12] <- this also works with tuples
IO.output(chanlist, IO.LOW) <- this sets all in chanlist to LOW
IO.output(chanlist, (IO.HIGH, IO.LOW, etc))

Environmental information:
GPIO.RPI_INFO about your RPi
GPIO.RPI_INFO['P1_REVISION'] Raspberry Pi board revision
GPIO.VERSION RPi.GPIO version number
Find the function of a channel: func = IO.gpio_function(pin)
Returns: IN, OUT, SPI, I2C, HARD_PWM, SERIAL, or UNKNOWN

Pull UP / Pull DOWN:
Unconnected pins float. Default values (High or Low) can be set in
software or with hardware

Hardware:
Pull Up: Input channel -> 10K resistor -> 3.3V
Pull Down: Input channel -> 10K resistor -> 0V

Software:
IO.setup (channel, IO.IN, pull_up_down = IO.PUD_UP) or
IO.PUD_DOWN or IO.PUD_OFF

Edge detection: change of state event — 3 ways to handle

1. wait_for_edge() function - stops everything until an edge
is detected: IO.wait_for_edge (channel, IO.RISING) can
detect edges of type IO.RISING, IO.FALLING or IO.BOTH

2.event_detected() function - use in a loop with other
activity — event triggers priority response. Example:
IO.add_event_detect(channel, IO.RISING) set up detection

[your loop activity here]
if IO.event_detected(channel):

print('Button pressed')

3.threaded callbacks - RPi.GPIO runs a second thread for

callback functions. This means that callback functions can be run at the
same time as your main program, in immediate response to an edge.
For example:
def my_callback(channel):
 print('Edge detected on channel %s'%channel’)
 print('This is run in a different thread to your main program.')

IO.add_event_detect(channel, IO.RISING, callback =
my_callback() add rising edge detection on a channel

 ...the rest of your program...

If you want more than one callback function:
def my_callback_one (channel):
 print ('Callback one')
def my_callback_two (channel):
 print ('Callback two')
IO.add_event_detect(channel, IO.RISING)
IO.add_event_callback(channel,
my_callback_one)
IO.add_event_callback(channel,
my_callback_two)

Note that in this case, the callback functions are
run sequentially, not concurrently. This is
because there is only one thread used for callbacks,
and every callback is run in the order in which it is
defined.
4. Remove Event Detection:
IO.remove_event_detect(channel)

Switch debounce: solutions to a
button event causing multiple callbacks

Hardware: add a 0.1uF capacitor across your
switch.

Software: add the bouncetime= parameter to
a function where you specify a callback function.
bouncetime= should be specified in milliseconds.
IO.add_event_detect(channel, IO.RISING,
callback=my_callback, bouncetime=200)
or
IO.add_event_callback(channel,
my_callback, bouncetime=200)

Cleanup: resets all channels and clears the
pin numbering system at the end of a program. Just
good practice.
IO.cleanup()
Or cleanup selected pins:
IO.cleanup(channel)
IO.cleanup((channel1, channel2)) <-tuple
IO.cleanup([channel1, channel2]) <-or list

PWM: Pulse Width Modulation - analog
signal, Hardware available on (BCM / board)
PWM0: 12/32, 18/12; PWM1: is used for
audio 13/33 - so use PWM0: GPIO12/Pin32
Create a Software instance of PWM on any
in/out pin:p = IO.PWM(channel, frequency)

To start PWM: p.start(*dc)
*dc is the duty cycle (0.0 <= dc <= 100.0)

To change the frequency:
p.ChangeFrequency(freq) freq is the new
frequency in Hz*

To change the duty cycle:
p.ChangeDutyCycle(dc)
where 0.0 <= dc <= 100.0

To stop PWM: p.stop() *100 = 100 times a
second, .5 = once every 2 seconds, .1 is every 10
seconds, .0167 = once a minute

Using 1-wire: A single channel: GPIO
[4] is 1-wire capable for low speed sensor input;
Rpi must be configured to utilize alternate pin
functions like this!

RA
14 www.wikipython.com

Pins: 3.3V OUT @ ~16ma/pin; total of
50ma older models, 100ma newer; IN
1.8-3.3v High, <1.6v Low;

LEDs: blue & white
<2.1v, others ~3.2v;
20 ma constant; use
LM317 for constant I

TOOLBOX
For
3.5+

RA 14

270Ω -> red, purple, brown
330Ω -> orange, orange, brown
10KΩ -> brown, black, yellow
═══════════════════════════
RPi maximum current to a single pin
is 16ma, to all pins is 50 mA. A 3v3
supply is ~ 50 mA

UART:Universal Asynchronous
Receiver/Transmitter,
TDX: transmit, GPIO[8]
RDX: receive, GPIO[10]
default is console in/out

A Small RPi 2835 BCM\GPIO Glossary of Terms
BCM: Broadcom; BCM = GPIO in pin numbering
CE0/CE1: SPI Chip Select 0/1
DPI: Display Parallel Interface - uses 28GPIP pins
GPCLK: General Purpose Clock
I2C/I2C/i2c/IIC: Inter-Intergrated Circuit; serial bus;

SCK or SCLK: Serial Clock, master to slave; SCL: BSC
 Master clock line; SDA: serial data pin; ID_SC:
 connection to SCL0; ID-SD connection to SDA0
SPI: Serial Peripheral Interface
JTAG: Joint Test Action Group
MSIO/MOSI: Master Slave Out/In
PCM: Pulse Code Modulation
PWM: Pulse Width Modulation
SDIO: SD card interface
W1-GPIO: 1-Wire interface; defalut is bcm[4]

V
 I R

Cover the
1 you want

P
 V I

Cover the
1 you

want

© 2025 John A. Oakey

V011225

